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NATIONAT. ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2497

GENERALIZED CONICAL—FLOW FIELDS IN
SUPERSONIC WING THEORY

By Harverd Lomax and Max. A. Heaslet
SUMMARY

Linearized, compressible—flow analysis is applied to the study of
quasi-conical supersonic wing theory. Single—integral equations are
derived which relate elther the loading to the shape of a lifting
gurface or the thickness of a symmetrical wing to the pressure distribu—
tion for triangular wings with subsonic leading edges. The forms of
these equations and thelr inversions are simplified through the intro—
duction of the finite part and the generalized principal part of an
Integral.

Applications of the theory, in the 1ifting case, include previously
known results. In the nonlifting case, it is shown that for a specified
pressure distribution the theory does not always predict a unique thick—
ness distribution. This is demonstrated for a trianghWlar plan form hav—
ing a constant pressure gradient in the stream direction.

INTRODUCTION

If a sufficiently thin wing at a small angle of attack is placed in
a uniform stream, its aserodynamic properties can be determined by means
of the analysis associated with linearized compressible—flow theory.
If, moreover, a Cartesian coordinate system is used such that the wing
is situated on or in the immedlate vicinity of the xy plane and the
stream flows parallel to and in the direction of the positive x axis,
it follows that the basic equation for the perturbation potential
¢(x,y,2) can be written in the form

2
B q)xz—wyy_q)zz =o (l)
where ﬁa = Moz-l, Mo being the free—stream Mach number.

The application of equation (1) to wing theory is essentially a
mathematical problem involving the solution of a differential equation
with given boundary conditions. Consistent with the assumptions of
linearized compressible flow theory, or small—perturbation theory, the
boundary conditions expressing the prescribed physical conditions are
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given always at z = O and, as a consequence, boundary conditions as
well as the solutions are superposable.

The techniques used in the solution of wing problems are, for the
most part, adaptations of existing mathematical methods to the specific
type of boundary values and their supporting surfaces that occur in
aerodynamics. In particular, it is often possible in theory to make a
reduction in the number of independent variables by virtue of known
geometric or physical conditions. The conical—flow—field analysis of
Busemann (reference 1) provides in this way a means of descending from
a three— to a two—-dimensional potential equation.

A conical flow field is one in which the perturbation velocity com—
ponents and the induced pressures are constant in.magnitude along any
ray from the apex of the field. In this case, the perturbation poten—
tial may be written in the form

= By Bz \_ X Bz \_ x By
cp(x,y,z) = Xfl<_xz3%c—>— Bﬁa(g;:g)— BZfS -EE,B—Z (2)

where @ 1s a homogeneous function of degree one in the three variables.
An obvious generalization of this concept leads to the consideration of
homogeneous potential fields of higher degree or, as they are sometimes
called, quasi-conical fields. If ¢ 1s homogeneous of degree kK + 1,

it follows that

’

- k1 By Bz '\ _ K+1 X Bz \_ K+1 X By
CP(X,;Y,Z) X FJ.(X:x)— (ﬁy) Fo Ei:ﬁ)‘ (BZ) g 'B—Z:"Z (3)

Equation (2) ylelds conical velocity fields, the degree of homogeneity
being zero, while for equation (3) the quasi-conical velocity fields are
homogeneous and of degree k. Applications of these quasi-conical
fields to pitching and rolling triangular wings have been given by
Brown and Adams (reference 2), while Ribner (reference 3) has used sim—
llar methods in the consideration of cancellation elements. Further
examples may be found in the literature.

If new variables are introduced in equation (1) such that

Bon, Bot, olx,2) = ex®2a(n,t) ()

where ¢ 1s an arbitrary constant, the transformed partial differential
equation is

(n2-1) Qpp + 2n8 Qng + (B-1) Qe — kl2n @ + 20 Q¢ — (k1) Q1= 0 (5)
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Thus, for a quasi—conical flow field with apex at the origin of the
coordinate system, the resultant differential equation is elliptic for
all values of n,g satisfying the inequality

n2t® - (17)(1+4%) < 0
that is, for all points inside the foremost Mach cone
x2 — B2y2 — 3222 = O

The analysis of particular problems is therefore intimately associated
with the study of two—-dimensional, elliptic—type equations and is espe-—
cially suited to the use of complex—variable theory. This is the
approach taken by many investigators. In references 4 and 5, Lagerstrom
and Germain have developed these methods in considerabls detail.

A different approach to the
study of lifting surfaces in conical
flow fields has been given by Brown M
(reference 6) and in reference 7. °
In this approach a basic lifting ele—
ment carrying a uniform load distri- I\ ¥
bution and extending radially from / \
the apex of the fisld (see sketch) is / “\\
considered first. The induced veloc— / \
ity field is calculated for such an / \
element lying in the plane of the 7 \
wing and inclined to the stream / .y y \
direction at an arbitrary angle 6. \

The solution of a particular problem \
then proceeds along one of two lines. \
If the loading is given, the strength ‘
of each element is fixed and the cal-—

culation of the lifting—surface geomstry depends only upon carrying out
the integration. This is referred to as a direct problem. On the other
hand, if the geometry of the wing is given, the loading is unknown and
the strength of the elements must be adjusted so that the resultant ver—
tical induced velocities are consistent with the given wing slope every—
where on the plan form. The solution of such a problem depends upon the
inversion of a relatively simple singular integral equation and is
referred to as an inverse problem.

As was pointed out in reference 8, similar methods apply to non—
1lifting problems in conical flow fields and pressure distributions cor—
responding to conical elemgnts of thickness can be calculated. In such
cases, however, the direct problem, that is, the one involving the eval—
uation of an integral, is the one in which the slope of the wing surface
is given; and the ‘inverse problem, that is, the one involving the solu—
tion of an integral equation is the one in which the shape of the pres—
sure distribution is prescribed.
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The present paper is concerned with the generalization of the
basic elements of references 7 and 8 and their application to lifting
and nonlifting problems in quasi-conical fields of flow for cases
involving subsonic-type leading edges. Only solutions to the inverse
problems will be considered and at all times these will be obtained by
inverting the integral equation.

The orders of singularities that arise in the analysis are such
that 1t is convenlent to use the concepts of the finite part and gener—
alized principal part of improper integrals. These generalizations will
prove to be of importance for their notational efficiency and permit a
simplified treatment of the derivatives of singular integrals. Hadamard
(reference 9) has pointed out clearly the necessary steps in the treat—
ment of such improper integrals, but did not stress the role of the dif—
ferential operation in obtaining his integrals. Since some differences
exist between Hadamard's definition of the finite part and the one used
here, when extensions to multiple integrals appear, a different notatiom,
consistent with reference 10 has been adopted. The generalization of
the principal part has also been discussed in reference 3.

LIST OF IMPORTANT SYMBOLS

ao speed of sound in free stream
c(e) load distribution on lifting surface as a function of @
m slope of radial element relative to fres—stream direction
m, slope of right leading edge relative to free—stream direction
m, slope of left leading edge relative to free—stream direction
Vo
Mo free—stream Mach number =
: o]
P local static pressure
Po free—stream static pressure
P angular rate of roll in radians per second
qQ free—stream dynamic pressure (JELQOV02>
Q angular rate of pitch about wing vertex in radians per
second
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Dw

&p/q

)
0,645,912
A

)

Po

T

o(x,y,2)
a(n,¢)

free—stream velocity

streamwise perturbation velocity

perturbation velocity normal to plane of wing
Cartesian coordinates introduced in equation (1)
wing angle of attack

VM2 -1

angle between free-stream direction and line through wing
vertex

angle betwéen right leading edge and stream directlion
angle between left leading edge and stream direction
discontinuity in u in plane of wing (u, — uj)
discontinuity in w in plane of wing (w, — wyp)

(p7 — py)
q

load coefficient

constant determining degree of homogeneity of Quasi-conical
velocity field
(See equation (3).)
conical variables introduced in equation (4) BTZ, %)
mB, myf, mf
slope of wing surface relative to free—-stream direction
Mach angle (arc cot B)
free—stream density
region of integration in equations (10) and (27)

perturbation velocity potential introduced in equation (1)

function related in equation (4) to perturbation velocity
potential of a quasi—conical flow field
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Subscripts
u denotes conditions on upper surface of wing
/
1 denotes conditions on lower surface of wing
ANAT.YSTS

This investigation is confined to a consideration of inverse prob—
lems; that 1s, problems that require the inversion of an integral equa—
tion. As has been pointed out, these problems correspond to the two
following cases: elther the load
distribution over a given lifting
surface is to be determined or the
thickness distribution corresponding
"to a prescribed pressure distribu—
tion is to be calculated. The given
conditions must, of course, be such
that a quasi—conical flow results.
First, therefore, the plan form will
be chosen, as shown in the accom—
panying sketch, S0 as to have an
apex at the origin of coordinates
and to be of semi-infinite extent.

\ The traces of the foremost Mach cone
Yx N are inclined to the positive =x axis

at the Mach angle *u =fgrc cot B

and, since only subsonic leading edges are being considered, the leading

edges of the plan form are inclined at angles smaller in magnitude

than 4. Denoting these angles by 9o and ©&; and measuring them from

the x ‘axis positively in the conventional counterclockwise direction,

it follows that the equations of the leading edges are

y=xtan 8y =mox and y = x tan 8; = mx (6)
In the sketch &y 1is positive while 8; 1s negative.

The boundary conditions for the two types of problems may be stated
as follows, where subscripte u and 1 are used to denote conditionms
at z = 0+ and 2z = O—, respectively:

Lifting case: Over all the xy plane Aw =iwu —wy; =0 and,
except for the region occupied by the plan form, fu = u, —u,; = 0.
On the plan form, vertical induced velocity is specified in either
of the forms
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vy =W, = Vo 75 7 <J§>=Voxk72 (3‘5;}

where 71 or 7z are known polynomials in x/y.

Nonlifting case: Over all the xy plane A4u =u o =Uu, = 0
and, except for the region occupled by the plan form,
Lw = wyy — wy = 0. On the plan form, the streamwlse induced veloc—
ity is specified in elther of the forms

u’u=ul=voykvl<§> =Voxk"2 <'§'>

where vi or V, are known polynomials in x/y.

The solution to the two problems will be attained after con-
sidering first a lifting element and a thickness element and then,
for each of these problems, the basic integral equation is deter—
mined by summing the appropriate elements. These derivations are
given iIn the following sections. In small—perturbation theory the
local locad in coefficient form is related to u by the expres—

sions
A__p. = P Z—pu = 2fn = )-I-uu ( 7 )
q %pdvoa Vo Vo

and the slope in the streamwise direction of an arbitrary surface
z = z(x,y) is related to vertical induced velocity by the expres—

sions
LY
Yox oV, ,
N (8)
_821_wl
MU,
J

Lifting Case

Upwash fleld of lifting element.— Consider a radial element emanat-—
ing from the origin and assume that the load carried by the element is
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& _ ¢ gk (9)

where C 18 a constant for a fixed
position of the element. If the
element is inclined to the x axis
at an angle ©, its upwash field can
be calculated by subtracting the
induced fields of two triangular
plan forms with vertex angles equal
to B3 + AD and O, each triangle
having one side fixed for conven—
ience along the x axis (see sketch).
Assume, first, that © 1is positive.
As shown in reference 10, the upwash
field of the triangle can be calcu-
lated from the known load distribu—
tion by means of the fundamental
formula

&p
%’E=El;fdylf__£f:ﬁ)_ﬂ_.(fu’iu)2__d:x_l__£ (10)
o T (7=71)% W (x=x1) 8" (y~y1) ‘

where the region + 1s the area on the plan form that lies ahead of
the traces of the Mach forecone from the point (x,y,0). The bars on the
integral sign indicate that the generalized principal part of the inte—
gral 1s to be evaluated (see appendix). By definition, if

f F_(Y__?__’yl)dyl = G(y,y1) + constant ' (11a)
(y1-y) :

is a known indefinite integral, the definite integral is evaluated as
follows

j[ F(y,y1)aya _ G(y,b) - G(y,a), a,b #y (11b)
2 (71y )

In case the singularity in the integrand lies outside the region of
Integration, the definition yields, of course, the conventional definite
integral. In some cases in the following analysis the principal—part
8ign will be used to express relations valid for smgularltles both
inside and outside the range of integration.
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The integration with respect to xi1 1in equation (10) is carried
out over the area bounded by the lines

y1 =0, x3 =y1cotd=yi/m (x=x1) = +B(y71)
and, with the substitutions,
8 =pm, n=By/x, n1=ByL/x (12)

leads to the results

8(1+n)
B K W BC l+9 K ) 2
<-> 2 = j[ —wf_Ja - 34)° - (n=n1)" dna1; 0<6, -1<y<o
x/) V I 2 2
o o (n—=1) (13a)
8(1—)
Bckf“ 1-9 71" /( N1.,2 2
b (n=n1)® 8 (n_nl) " <T](13b)

If & and m are negative, the limits in equations (13a) and (13b) are
reversed so that as the limits are now written changes in sign are
required in the equations.

In order to obtain the upwash field of the required lifting element,
it is sufficient to perform a direct differentiation for, if w, of a
plan form with vertex angle ® 1is of the form

w, =71 (8,7n)

it follows that when 0<@, the value of upwash induced by the element
may be denoted dwy; and is

‘ of
dw, = £(6+28,7) — £(6,) = % ae
and when 6<0
.
dwy = £(8,m) — £(6+09,1) = — — a6

9

If this process is carried out in equations (13a) and (13b) and if the
transformation

g%
n1=90g—%
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is introduced, the expressions for dw,; become

vy _ B0 49 T )™ as , —1<n<6<1 (1ka)
( ) J€1 (e—n)(e—t)m’l 2 /l_t'g‘ M

Ej dw, _ BC 49 e“fﬂ (p=6)"** av -~ l<o< <l (1hb)
(x Yo b . (8 (o=t )t 2 /142

Bquations (1la) and (14b) provide the upwash fields for any radial ele—

ment, regardless of the sign of 8. Integration by parts leads to the
alternative forms

K

(g_) dwy _ _ BC d@(k+1) 6" f" (n=t)" V142 at

- 1l<q<o<l (15a)
X Vo bt -1 (6—t)K+2 b

—-1<6<q<1 (15b)

(9_)“ dw, _ _ BC do(k+1) 8 A (q=t)" «/1-1;2 at
:) 5 L
1

Ly (e—t)

where In one of the integrals the singularity in t requires the use of
a Cauchy principal part.

Derivation and inversion of integral equation.— If now the lifting
elements cover the reglon between 63 and 6, and C is a function
of @ determining the 1ift carried along the radial element gt that

point, upwash produced by the resultant plan form is given by the rela—
tion

<E>K YB.= lim _M[:fn_e en C(G) defn (n_t)K. 1-—t2 at ,
X VO €E—>0 LI-JT 01 A (9—t)K+2 N

0 —
f ° 6" (o) defn ()" /14 dt:l (16a)
n+e -1 ‘

( 9t )K.+2

This result can be written as

7 & 6 |
&§> M _E%HA © gk c(e) H(e,n) ao (16v)

(o] 1
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where

dt,  81<6<n

K /
H(0,1) =fn (n-t) #3147
1

(e—t )K+2 t

n< g9,

f“ (n=t) «/1-t2
1 (6=t )72 ¢

The function H(G,n) has a simple pole at 6 = 5, and the integral
expression for w, in equation (16b) is therefore evaluated as a Cauchy

principal part.
The boundary condition to be satisfied by equations (16a) and (16b)
is that pB® w,/x® Vo is a polynomial of degree k in the variable 1.

It follows that the (k+l) derivative of the right—hand member of equa—
tion (16b) must vanish.

Thus

_ Blk+1)
Thn J,, 0o C(e)<a,]) H(6,1) (17)

where use is made of the generalized principal part of an integral
defined as (see appendix)

ij A(xy) dx; _ < ‘> A(Xl) dxy
o (x—x)0*1 0! \(ox X1
n+1

= <ax> A(xl)lnlx—xlldxl

Here again the definition applies regardless of the value of x but is
of particular significance when x lies within the region of integra-
tion.

Continuing the calculation in equation (17), one has, after taking
the derivatives with respect to 1,

o< Vl—najl“eo 6% C(o) a0

1 61 (e_n)n+2
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which may be written in the form
k+1

73 9 " ¢() a0 _
\$> fel om0

The function C(9) is thus to be found through the inversion of the
integral equation

8o ok K
f o9 céa) e _ Z ay 0l (18)
6 "0 |

i=o
The inversion of the integral equation

b
f(x) =f 5—(—%, a<x<b
a

x—§

is known to be

b
(x) = 1 A— £e) /(b= )(t—a) a
& (b—=x)(x~a) [ ‘/; x—£ g:l (19)

where A 1s an arbitrary constant to be determined from physical con—
siderations. Thus, the solution to equation (18) for 6:<6<6, is

K

) amt oo nen)
0% C(8) = ———e | A - [ 010
) V(6 ,-6)(6-01) [ /;1 6-n o }

and this leads to the expression

K+1 1
o® c(o) = 018 (20)
&y V(85-0)(8-91)

where the coefflcients b3y are functions of 6p and 63 Ddbut not func—
tions of 4.

Relation of general solution to wing goometry.— From equation (9)
the loading on the plan form is, since 0 = By/x,
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K+l i '
‘ < > Z f(eof;(e—el) .

where the coefficients by must be determined from kmown information
about the surface geomstry.

Consider next the identity

j[b dt —l) < >f at _ o
a (e-t)i“"l«/(b—t)(t—a) 38 (6—t) /(b=t)(t—a

a<B<d (22)

wvhere 1 1is zero or a positive integer. This expression implies the
equality

.7[1 (1=t)" /14 at
K+2
-1 (6-t) t

since the latter form can be broken, by expansion into rational frac-—
tions, into integrals like the left member of equation (22). The equal—
ity

J[“ (n—t)"Jl—t a j[“ (n=t)""/142
1

-1 (g-t)"2 I

follows where the principal—part sign is needed on but one side of the
equation, depending on the value of 6 relative to 7. From this
result and equations (16) the following relations are obtsined:

\ 9
<E> Y __ p(ea1) 7O
x/ Vo by \/g

1

|
e* c(e) de j[" (n=t)" ¥1-47

dt, n<0 (233)
s t(e-t)n+2

K
N wvu  gker) %0 (n=t)" V12
/V_o‘_ --—-—fel 8" c(e) dejg dt, >0 (23b)

ll,j'[ t(e t)lt+2
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f 4 The range of 7 1in these two equa-—
tions has been restricted, respec—
tively, to negative and positive
values in order to avoid mathemat—
ical difficulties arising when sin—
gularities occur simultaneously at
=68 and t = 0, The shaded por—
tion of the accompanying sketch is
the region of integration in equa-
tion (23a). In the sketch, the

-/ } o

a; inequalities -156:<0, 0<9,<1
have been assumed. This implies
| T that the plan form has two subsonic—
4 ﬁl(f<7 type leading edges and such a con—
dition will be assumed to apply
henceforth.

éz 6; It is particularly convenient
to invert the order of integration
in equations (23a) and (23b).
Expressing the principal parts in the forms

f’l (et) VI e 1 ( 5*1 ()" V1®
-1 t({e—t )2 X=>0 (k41) da L/:1 t(6—=t—a)

fn (n—t)n “l—tz dt = lim < > fn (T]_t l—tz at
1 t (o=t )"*2 a=>0 (n+l)' . £ (9—t—a )

substituting from equation (20), and inverting the order of integration,
leads one to the forms

K
() m. = (247 "GV AE
K+1

Z by 61 ae
6 =

d/“ 0 i=o0 ) <0
81 (6-t~a) (6,—6)(6-01)
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K
BY Y _ 1ip B _5_>K+l T e) WV1eE
X/ Vo a—>0 hmk! \(da [ t
| K+1

i
E: bi o~ 46

Jf 0 i=o0
> 1>0
01 (6-t—a)w (8,-0)(6—61)

Use of the algebraic identity

ot
(6-t—a)

|
i
D
7
o
-~
+
&
Qr
+
o+
&

8\ wa_ 1m __p <_a_>
X Vo B a—>0 )-,-‘JTK.I 5@
K+1 i
z by z o1=J(t+a)d a0
9 .

n K s .
(n=t) #1142 . 01z J1
f-l t fel v (65-6)(6-61) '

K+1
. Z by (t+a)l a6
fal-“ (n—t)" V124t feo =

-1 & 81 (6—t—)/(8,0)(6-01)

+

K+l
by (t+a)l ag

n (q--t)K V1424t feo 1=0
8

01— t » (0-t—) ¥ (64-0)(0-01)
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K+1 i
z by Z 61~ (t—a)d2g0
8

MM (n=t)" ¥1+2as f 0o/ M| .
Jy b 91 V(85-0)(6-61)
K+1

Zbi (t+a)? ao
feo_a (n~t)" ¥1-t2at feo i=0
1 t 9

S— +
1 (6—t—a) v/ (9,-6)(6-6,)

K+1

. zbi (t+a)l 4o
f” (n=t)" ~1-t2at feo izo

9 t 81 (6-t—) J(eo-e)(e—el)

o]

The double integrals occurring first in the right-hand members of these
equations are of degree K in a and their derivatives consequently
vanish. Moreoever, from the identities

[ —1t

> bgx
X S
de -/ 0 s b (24)
f; (6-x) ¥/ (v-6)(9-a) . peEs
—_———, X< 8
 (b~x) (a—x)

.

it follows that the last terms in the right members vanish and that the
expressions for w,; become

K K+1

<E> Ya _ lim B _6_>
¥/ Vo a->0 k! \ 3q
K+1

fel—a m—t)n '/l—ta Z 'bj_(‘t+CL)i dt, <0
-1 K izo V(95-t-a)(9:-t—) |
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K K+1
<E> Yu_ lim B i)
X VvV, @->0 het \
+1
feo‘“’ (n—t)nm RZ by (t+a)?
© = W (t+a-8,) (t+a-01 )

If, as in the appendix, the finite part of an integral is

fb Alxy)ax, o1, J[b <_§_>i Alxi)axy _
a (x-0)"2 13...(21-1)Ya \®/  (x-0) 2

o1 <g >i fb A(x1)dx;
1.3...(21-1) \3b a (x1-0)*2

the expressions for Wy,

dt, n>0

1

may be written in the form

K+l
1
byt

dt, n <0 (25a)

) Yu _ —p O (nt)" V1t <_5_>K+1 1-o
Vo EeiJ_, t %/ e, %)%

K+1

N
Ml

E: bytl
jwu _ B ][90 (n=t)" /14 (_a_ A,
1 t ot

u —_—= ——_ dt, 720 (25b)
To e J(og)(o02) "

( 8
X

Equations (25a) and (25b) are the fundamental equations for a
lifting surface and, since wu/VO has been assumed known as a polyno—
mial in 7§ = By/x, it remains merely to determine the unknown coeffi—
cients by by equating coefficients of 1 on both sides of the
expressions. In the form given, it appears that for k>0 the number
of equations obtainable exceeds the number of undetermined coefficients,
No general theorems of determinancy have as yet been established as to
the uniqueness of the solutions, but applications to be made later will
indicate the techniques involved in calculating specific examples. In
the laterally symmetrical case, where -01=0,, solutions are easier to
determine and the fundamental equations are
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K+1
bytd

<E>KE=__£J["60 (T]—t)KJ]:‘»—Z_ <i>n+l§___dt n <0 (26a)
)V, WiJ_, t ) ez

K+1

Zbiti
(ij_u=_g_feo (l—t)K‘\/l—:tE<i K'+llid___dt n>0 (26D)
\x/ Vo Wi t dt V29 2 ’

Nonlifting Case

A radial elemsnt emesnating from the origin is to be constructed
such that it has a quasi—conical thickness distribution

K

= CF

where C 18 a constant and A; is the streamwise slope of the elemsnt
as defined in equations (8). The derivation of the induced pressure
field associated with the element follows closely the analysis in the
lifting case. Thus, a triangular plan form is first considered where
one gide is parallel to the stream direction and with a vertex angle .
From reference 10, pressure coefficient can be written in the form

= - .2... (x_xl) d.X_]_ .
Cp=—7 [M lef (G 22 (57 P72 (27)

where the region T 1s the area on the plan form that lies ahead of the
traces of the forecone from the point (x, y, O) and the integration
with respect to x; 1involves the finite part.

In the notation of equations (13), the analogues to equations
(15a) and (15b) are

k K
/B> ac 2 C a8 e*‘(ml)f“ t(n=t) at 1
= = - , - o<1 28a
\x )% Eidc] —1 (o=t )Kt2 /142 <N<P< (28a)
<E>K ac, = — 20349 GK(““l)fn U (28b)
X P ﬁﬁ (e_t )R+2 ./l_.tz ’ M

1
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If C 1is a function of 6 and the thickness elements cover the region
and 0,, pressure coefficlent on the plan form is given by

1 between 83
v the expression

K
8 _ lim =2 K+l) ‘ \ao T t(g-t) at
<x> %p L/; ,[ (9=t o t2 12 *

€—>0 '
% T t(n-t)" at
8 c(e)def — (29)
n+e€ -1 {6-t) 1-t2
The boundary conditions require . /x to be a polynomizl of
%ive of equation (29) is set

degree k 1in 1. If the (k+l)st derlv
equal to zero, the relation

Al /a T t(n=t)" at
O—J{ GC( \an fl (6=t )"F% l—t2+

1

K+1
. J[GO 6"C(6)as <i> fn tln-t) dt
1 n -1 (6=t )F*2 W12
holds, and after further differentiation reduces to

_ [P0 grce)ae _ [ - 1 9 gkc(o)as
O_il (6-n)F2 <an> (n+1)zfel (6—n)

The function C(@) satisfies the same integral equation that arose in
the 1lifting case. (See equation (18).) The solution can therefore be

written, as in equation (21), in the form

g K+l ei
=c(e) y* = (E 21 (30)
M ’ ‘3> IZO J(64-6)(6-61)

The equivalence

. J[n t(n—t)" at =][” t(n=t)* at
‘ 1 (et )Ft2/142

-1 (e_t )K. +2 \/’l——t‘?
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permits the rewriting of equation (29) in the forms

K K
7B _ —2(k+1 T t(n=t)" dt
\§> °p = —"E—lf dﬁdej{ (o=t )*2 142 n>0 (312)
@5 p = 2L %0 g0 e"defn shast)at o (31b)
x P B 61 ~1 (=t )E+2, /1 ¢2

Substitution for GKC(Q) from equation (30), inversion of the order of

integration, and use of equations (24) leads to the fundamental rela—
tions

K‘.;l
-
24 a.tl
A1 L
2 t( —t)

- mj——l V12 <3t> ‘\/(eo—t)(el—t)

\/3
Q
Lo
|

dt, n<0  (32a)

+1
. v
aitl
K 2 o b t) K+1
(g) c, - _ [P0 nlpt)" <a ) at, >0  (32b)
Jl N1tZ \ ot )(t—el)
\
When 63 = —6,, these equations become
K+1

K
2
) P BK! -1 1 t2 at 335)

(33D)

N
12
N
]
™

R \b]
Sy

<D
(o}
ot
—~
ct ||
N\./
S
/\\
/fQ/
ct

fu
il
st 1 K]
N

o
ct

The determination of the thickness distribution corresponding to a
glven pressure distribution can thus be obtained from the above equa—
tions by equating coefficients of 7 and solving for the unknown
coefficients aj. Specific examples will serve to make the steps
clearer; such problems will be considered in the following section.
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APPLICATIONS

Since homogeneous fields of low degree have already received con—
giderable attention, several results have been published previously. In
the case of thickness problems corresponding to specified pressure dis—
tributions, however, solutlions have never, so far as is known, been
sought in terms of the given pressures. Rather, the thickness has been
assumed known and the resulting pressure distribution calculated. This
latter attack involves no question as to uniqueness and a one—to—one
correspondence certainly exists. When pressure 1is prescribed first,
however, it becomes necessary to consider the possibility of nonunique-—
ness. In two-dimensional, low-speed flow a freedom of choice is known
to exist and leads to the introduction of purely circulatory flow which,
in turn, provides the mechanism of 1ift. No analogue to this occurs in
the low—speed, two—dimensional, nonlifting case when the body is smooth
and 1s assumed to close. In the following developments a multiplicity
of solutions will, however, occur in the nonlifting case and bodies with
given pressure distributions retain a degree of freedom.

Equations (25) and (26), together with equation (21), suffice for
the solution of quasi-conical 1lifting problems while equations (32)
and (33), together with equation (30), apply to symmetrical wings. In
the applications to follow, the division into 1lifting and nonlifting
cages has been maintained. The detailed treatment of equations (26) and
(33) can be further simplified 1f the problems are separated into cases
involving symmetry and antisymmetry about the x axis of the imposed
boundary conditions. Suppose, first, that the given values of upwash
and pressure coefficient in these equations are odd functions of 1.
It follows from physical considerations that the loading or surface
slope, respectively, will be an odd function of 17 and that conse—
quently the unknown coefficients ai or bj must vanish for even
values of the subscript i. If the transformation t = —1 is made in
elther equation (26b) or (33b), the pairs of equations (26a) and (26b)
or (33a) and (33b) yield consistent sets of simultaneous linear equations
that can be obtalned from single equalities. Hence, for wy or Cp
expressed in odd powers of 7,

[K/E]
ng t2j+l
K+1 +1
<E>K wy LBJ[GO (n=t)FV 12 <_§_> J=0 at (34)
X/ Vo hkidy t ot ,/ta_eoz 3

or
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[k /2]

23+1
2J+1 k

L)
S a-airar e,

‘90

where the notation [kK/2] in the summation denotes the largest integer
contained in k/=.

In the same fashlon, a simplificatlon can be achieved for symmetri-—-
cal boundary conditions. Again using the bracket notation to indicate
the largest integer, the resulting equations become, when w, or Cp
are expressed In even powers of 1,

[ (k+1)/2]
bay t°9
K K+1
<E> w8 [ (n=t)" Y142 <i> J=o it (36)
x/ Vo, lbrlJ, t ot t2_g 2
or
[ (k+1)/2]
| . aay 20
K+l
(ej ¢ -2 JF% 8(n-)" (i) 3= at (37)
x/ P opridy e \ot V229 2 |

Wings With Load Distributions

The yawed triangular wing.— Equations (21) and (25) lead directly
to the determination of angle—of-attack loading on a yawed triangular
wing. This solution is well known and was calculated in reference T by
a method which wag a particular case of the present theory.

The boundary conditions are that wy; = — Voa on the plan form,
hence k = O and, from equation (21),

Ap _ bo+b10 (38)

1 J(e9)(6-01)
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Equations (25) lead to the equalities

dt

8 feo N1-t2 3 b +bat
— a,: —— —
b,

t 3t W(t-08,)(t-91)

-8 91 /152 3 botbat

-— 0 = —— dt
Yoy t 9t W (Bp=t)(91-t)
After integration by parts, these relations become
L. _B 86 (bo+bat) dt
by 82/ (142) (4-0,) (£-61)
81
oo gf | (botbat) dt
- Mo 2 (42) (00t) (82-%)
Hence, : 3
a,=‘% [ bo Lo(Bos 81) + b1 L1(6g, 621) }
: (39)
@ = % [ bo Lo(~01, -60) ~by Li(-81, —60) }
where
8o t
Lo(8os 02) = = [ d
1 2 V(1-42)(+90) (t-01)
and

: % dt
Li(8g, 01) = —
+(0; 02) [ t /(142 (t-9,) (t-01)

It is apparent that equations (39) can be solved for bo and bj
in terms of the functions ILo(60, 81) and L:(60, 61). Substitution of
the values into equation (38) leads to the expression for load coeffi-
cient .

oG { (90+01) 620091 :i (40)
V(6,-9)(6-61)
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where E 18 the complete elliptic integral of the second kind with
modulus ~ﬁf:§§ and

12
o . 1000y = /(15057)0072) _ |/100)(iv02) — +/(i07)(1r00) J (h1)
8091 2(645-01)

In the particuler case when 6; = —0o, the value of G becomes 6,
and the resultant loading on the unyawed wing becomes

AN ba 6,2

q BE ,,/902_92

where the modulus of E is Veroz. This latter problem could, of
course, have been solved directly from equation (36) in a much simpler
fashion.

The rolling triangular wing.— Consider next the case of an unyawed
triangular wing rolling about its axis of symmetry. If the angular rate
of roll is P radians per second, the boundary conditions on the wing
are that w, = —Py. In this case k =1 and, from equation (21), the
loading on the wing is given by the expression

fp _x b (ko)
q B /902_62

where the coefficients by and bz can be deleted since the loading
mist obviously be antisymmetrical. Since [k/2] is equal to zero in
equation (34), by is found to satisfy the relations

r_ —Bblfeo A1-t2 <_5_>2 —5 __ at (43a)
Vo L Jy t ot/ W2 g2

% ) N t
0=%b f NV1-t2 <-—> —_ 4t (43b)
1 1 at /.t2_902

Performing one differentiation with respect to t, in each of the
two integrals, and then integrating by parts, leads one to the eXpre S—
gions

P _ Bbleozfeo at _ Bbigo f% at
Vo o * Ui 212 (129.2)%% 4 .Yy 12 /(1) (P 2)
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0 bezfeo t dt - b16o afeo, t dt
= l o y — Se———
1 V16® (179,2)%/2 Bodr W (1-47)(+762)

The last equation reduces to an ldentity while the former one becomes

P =-J3b190 d < gby [ 2B-62 (E+K) (Ll
A eo> [ (1-6,%) } !

where the modulus of the complete elliptic integrals E and K is
'k = /1852, From equations (42) and (44) the loading is

2 .
Lp 4P 852 x 9 (45)

2002 /—'—'
: 92v0< = E - 1-92 )

18,2

and is in agreement with the results of reference 2.

The pitching triangular wing.— If an unyawed triangular wing is
pitching about its vertex, the boundary conditions become w, = —Qx
where Q 1s the rate of pitch in radians per second. From equa—
tions (21) and (36), the loading and the relation involving the undeter—

mined constants are

bp X bo+b26

q—ﬁ Je2

and

_-P_g=§fo(_t l—t2< >bo+b2t2 it
Vo 4 ot

gince K =1 and the loading must be symmetrical about the x axis.
Equating coefficients of 73 in the latter equation, one has

2
o =f90. V12 <_§_> botbet® . (46a)
1 t ot «/tz—eo§
f 12 < > botbet® 4y (46b)
ot A t2-9 5
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or, after carrying out one differentiation and integrating by parts,

d fso t at 2y d P at
0 = by — — (bo+2by0 )—f
© %o, VI2) (%-0,7) =0 o t W (1+47) (t5-85")

cmp [Tttt
V(1—Z) (t%-0 7

M,
o
Vo ae’o 90

1 2
(bo+2b202) ~> k-

Bodg V(1-47)(t702)

The first term in the first equation is zero and, after integration of
the terms in the second equation, the following relations are obtained

0

2
b°+ 290 ba

~Lx2Q

- bo(EXK) + (E-6,°K)b2
(o]

where the modulus of the complete elliptic integrals is k = ./1-9.2.

The solutions of these simultaneous equations are

+8 8,2x2Q -4 k2Q

bO = 2 2 ’ N b (lﬂ)
Vo [ 00°K+(1-207)E ] [ 007K+ (1202 )E | Vo
[ 3
and the resultant loading on the wing is
Lp kx 2 052 — 6° v (48)
- > 7 o8 1-262
1 vys/0.2-67 2K + 2-E
1-8 164

Differentially deflected triangular wing.— If the two sides of an
unyawed triangular wing are deflected differentially, vertical induced
velocity on the wing is
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and loading must therefore be asymmetrical., It follows that kK =0
and, from equations (21) and (34),

Ap_ by 8

q A /902___92

and

B % JSikZ 3 bit
i T %
1 T --90

An integration By parts, in the latter expression, reduces the integral
to a standard form. A further integration leads to the equality

by = 8 6o
B

and load distribution is therefore

f_ B9%0 )

% gr.fo 267

Triangular wing with parabolic twist.— Consider, finally, an
unyawed triangular wing twisted symmetrically such that its vertical
induced velocity is of the form

where r 1is a fixed constant. Since r = 2, the relations

bo+b 292

@=<£>2
1 \B/ Jo29%

and

dat

rH2 =

3

feo (n=t)® V142 ( 3\ botbat?
1 t ot Jt2—g o2
apply. Detailed analysis will be omitted in this case since it follows

the same pattern of development used in the earlier cases. Three simul—
taneous equations involving the two unknowns b, and by are obtained,

|
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but the equation relating coefficients of vy can be shown to vanish
identically and the two remeining equations yield a unique answer. The
expression for load distribution is

(50)

o B £>2 i [202K~(140 2 )E [+[~(3-0,2 K+ (2-0 2 )E J62
e B \B °[

=50 G4H5+80 2 (1402 JKE+ (46 5198 244 )2 | /B 20

where the modulus of the complete elliptic integrals K and E is
l—eo [

Wings With Thickness Distributions

Triangular wing with uniform pressure.— In reference 11, Squire
consldered certain thickness distrIbutions for symmetrical nonlifting
wings In conical flow fields and calculated the resultant pressure dis-—
tribution. The first of Squire's examples was a triangular plan form
with a uniform pressure distribution. It is instructive to consider the
inverse of this problem and to seek the wing assuming the pressure
variation known. The plan form is symmetrically disposed with respect
to the x axis or stream direction while the boundary conditions
require that C_, 1s a constant over the entire wing. In this case,

K =0 and from equations (30) and (37) the following relations hold

dzy _ = B0 1
-y i (51)
[0
2 r% 3 e
Cp == f g at : (52)
BJy St S22

The value of a, may be found in a manner quite similar to the ome
used in the previous examples. Thus, after the differentiation is per—
formed, equation (52) becomes

t2 at a0 3 /%o 2 at

BCP 90
—_— = - T o — ,
2 o\f v1—t2 (ta-eoz )3/2 60 390 1 J(l_t2)(t2_902)
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After integration, this ylelds

Bcp 8 9 _ &Q(K—E)

P28 5=

2 8o M 1-802

(53)

where the modulus of the elliptic integrals is #1-8 2. If a, 1is
eliminated from equations (51) and (53), the slope of the wing on the
upper surface 1is

dzy _ BCp(1-857) 1 Cp(1-857) x

ax 2(k-E) 8262 ) 2(k-E) P57

The ordinate of the upper surface results from the integration

X dzy
zZ,. = — dx
m
and 1is
- S&:ggflgE ‘/mgxz_yz = Sl:ﬁeflgnf ,/902_92 (54)
2rf (K-E ) 2p1® (K-E )

Triangular wing with linear pressure gradient.~ It is now proposed
to determine the thickness distribution for an unyawed triangular wing
for which pressure varies linearly in the streamwise direction. Set—
ting Cp equal to bx, it follows from equation (30) that the slope of
the upper surface 1s expressible as

dz;, x aj+az6”

ax B ./905—62

since the solution 1is obviously symmetrical about the stream axis.
Since k = 1, equation (37) becomes

Equation (56) is an identity and, after the coefficients of 1 are
equated, leads to the two relations

(55)
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% ¢ 3 \ aotast?
0= f ._> S0782" _ 4t (5Ta)
1 12 \ot 28 2
2 ] 2 2 2
8% _ ‘f * = (__a_ 2ortet b (57b)
2 1 1=t at .t2_e°2

It is of interest to compare the series of equations just
developed with the corresponding equations in the problem of the pitch—
ing triangular wing. Formally, the algebraic steps are the same and it
is to be expected that, Just as in the cass of equations (46), two
similtaneous equations will be obtained and that their solutions will
provide the constants a, and as. In the present case, however, equa—
tion (57a) can be shown %o vanish identically and as a result only one
equation in two unknowns remains. This means that an infinite number of
possible solutions exists. The following calculations will supply the
necessary details to confirm these remarks.

Consider equation (57a) and introduce the transformation
o (58)

=1, 82 =1

Then, by means of the relations

2“/_2? 2=e<27_+_> (59)

T o2

the equation becomss

o
|

To g7 F D 1
= ag 2T —5 + — +
1 J1-T or oT JT=To

a"’J{T r(”“‘*“‘)‘ﬁr

[

fl i:)?:-f f ’ /E{ETT‘J

To TdT

81—02 1 o/ (1—11')(T—-r° - a'ro f fm ]
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Each of the above integrals can be evaluated directly and the bracketed
terms are in both cases zero. Since similar integrals occur in problems
of this type, however, it is worthwhile to give the following general
formulas (n an integer)

T

o n
To4T =, n=0;=—2%1+1,), n=1;
1 VAT (o) 2
b (2n-1)¢
= - [ (1’0n +1) +
o2n—1 (n-1)!n!
n—1

2(23-1)!(en—23-1)! ng
Z (n=3)138(3-1) (n—3-1)!¢ To } , n>1 (60a)

J=1
and

To [T T —1
f Ta 2 ar o n, n=20; =
1 1-7 2

_ n(7o-1) [ (2n—l)1'ron+ (2n+1)!

220 (n41) (n~1)!n! 2 n! n!

2 .
(To +275-3), n=1;

R

nN—1

2 (23+1) ! (en—23-1)! . H—J}’ n>1 (60b)
(n-3)i3t3t(n-g1)t °

It remains to calculate the terms in equation (57b). If the dif—
ferential relations in equation (59) are used, the desired expression is

—£%p F 3
= g <2 a1_02D1 + aTOD2>+

2

aa<2 & D —5-—a—-D1+D2 (61)
' 5:;2 3 97T, |
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where

(1+72)E

w|+—

T 2 K
D1=fo L& =-2f dn*udu:g'rozl{
1 W10 (=) o 3

To K
D2=f %:TT =—2f dn? udu = —2F
1 T(l—T)(T—TQ) o

g 3
Dg= [ ° A fd.nudu=

1 J111—T)(T-To)

and the modulus of the elliptic integrals E and K 1is V1.
Direct calculation gives for the coefficient of ao the expression

i

oDz + % (L+7 )Dl

\.nlw

E (3-19) — 2K
(l--'ro):a

and for the coefficient of az

2ToE-ToK—=T2 K
(l—,1'0)2

The value of b from equation (61) thus establishes for pressure
coefficlient the value

Cp=ﬁi:7o-2—;2- {ao [2K—E(?402)J +

az li(e0 +00°) K — 20,2 E]} (62)

where the modulus of the elliptic integrals is 1-6 .2,

From equation (55), the ordinate of the upper surface of the wing
is

X dz, a.oxz+8-2325'2
e f.:»: o=

m

ot e, I 2p2m 2 n X 6
SFn? mo2xP—y? P—- (ag+2B®maz) arc cos - (63)
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In reference 11, Squire considered the thickness distribution that is
obtained by neglecting the arc hyperbolic function in equation (63).
His results correspond to the case when a, 1is ~2p2mo2a, and are
gpecifically

B?_ = JfuFEE (6ka)
Gp = Ez—(f-_rt(s-eo?m-(uez)m (6kv)
~Bo

If the wing 1is cut normal to the
gtream direction to form a trailing
edge, a triangular plan form and an
elliptical cross—section result as
shown 1n the accompanylng sketch.
If the root chord of the wing is

Co and the maximum thickness at the
trailing edge is t, the constant
ap 1in equation (6ka) is equal to
B?mot/ccR and the analytical
expressions for the upper surface of ‘ Yx
the wing and pressure coefficient

=2 /<°o> <moco> ¥

(65a)

o, = __;"_9_’2%____[(3_9 JE—(4-20 2 ] —/ 12
co2(1-02)? _t

(65b)

It 1s apparent that a multiplicity of thickness distributions with
the same pressure distributions must exist. Conslder first the case
when a, in equations (62) and (63) is zero. The surface ordinate and
pressure coefficient are, respectively,

a;
a = -i—:—z- arc cosh m_;.x_ (66a)
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_ 2apx 6,2 [ 2y o ] 6
cp_m (1+6,2) K - 2B (66p)

The lateral section of such a wilng 1s shown for particular values of

Mo and B in the next sketch (the curve denoted by n = w), Along the
root chord the thickness is zero while the maximm thicknsss position
ocours at the value of mox/y satisfying equation ,

mox/y = arc cosh fox

2 o/ (mox /y P2 y

or at approximately
mox/y = 1.3128 or y/mox = 0.7617

The pressure coefficients of equations (65b) and (66b) are ilden—
tical provided the equality

az _ Mot  [(3-66%) K — (4—20,2)E]
8% 2920 2 [(146,2) K — 2B ]

holds. From equations (65a) and (66a) 1t follows that the surfaces

“ S LT -

Ze _ < y >2 [(3‘902) K- (Meoz)E] arc cosh —o= (67b)
t mcy [(1+6,%) K — 2x] v

have precisely the same Pressure distribution as does also any surface
given by the relation

2Z 221 + 2nZ2

E t(1+n) (67c)

where n is an arbitrary miltiplicative factor,
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Cross sections in the x = ¢, plane of surfaces given by
equations (67a) and (67b) are shown in the accompanying sketch for

2z | "

— 1

Section BB Section AA

<Y
>

My =+/2 and mo = 1/2. Also included are sections calculated from
equation (67c) for n =1 and n = 1/5.

Since bodles with the same pressure distribution can be found, the
possibility of combining results and getting a body inducing no change
in the free—stream pressure should be investigated. From equation (62),
it follows that for Cp = 0, the arbltrary constants a, and az must
satisfy the relation

ap 2K — E (3-8o2)

agp 902[ (l+902) K - QE]

and, from equation (63), the ordinate of the resulting surface 1is
expressible in the form

2ﬁ2m03 2
Zy = <——°> (____o) -1 - P arc cosh =
aoy? y y y

where

Py = P2/Ps
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Py = (146,°) K — 2E

P2 = (3-6,°) K — (b20,2) E

The surface produces a real wing only if 2z, remains positive and this
condition leads to the inequality

(mox/¥) J(mox/y)z -1 /arc cosil mox/y 2 Py

The range of mox/y is from 1 to ® and it 1s easy to show that the
loft member has the lower limit 1 at mox/y equal to 1. On the
other hand, P can be written in the form

P2-2(1-62)(K - E)

Fa

and, since K —-E>O0 for 6,<1, 1t appears likely that P, 1s
greater than one. A more detailed check shows, in fact, that Pg lies
between 3 and 9 from which it follows that the inequality can never
be satisfied in the neighborhood of the leading edge and no real wing
with zero pressure coefficlient is possible. The variation of P,;, Pa,
and Pz 1is shown in the accompanying sketch in which the variables are
plotted as functions of 6,2

|
. |
9 6 12k -»
7 4 & ///
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\ el
\ A
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)\\\
5 2 4
/ \\\lzz
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\Q |
3 0 0 -
0o 2 49 .6 &
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CONCLUDING REMARKS

It has been shown that the assumption of quasi-conical flow in a
supersonic fleld transforms the basic partial differential equation for
the perturbatlion potential to an elliptic~type equation in two inde—
pendent variables throughout the region inside the Mach cone. It ig
therefor® not surprising that solutions of wing problems, for both the
lifting and the nonlifting case, lead directly to the consideration of
an integral equation (equation (18)) of the type encountered in two—
dimensional subsonic theory. In the analysis and the applications of
this report, it 1s shown that for a large class of specified conditioms
the known inversion of the integral equation produces solutions that
require stralghtforward integrations and the solving of simultaneous
linear equations.

An unusual feature of the resulting theory is the fact that s
miltiplicity of solutions may appear in a given problem. In retrospect,
this degree of freedom is not surprlsing since it is well known that a
null solution exists In two-dimensional subsonic theory and appears in
11fting problems in the form of a purely circulatory flow. In the study
of subsonic symmetrical profiles, this arbitrariness in the solution
occurs when the geometry of the wing 1s to be determined from the dis—
tribution of pressure exerted by the fluld. Since, however, closure of
the wing 1s necessary, an additional condition is given which estab—
lishes uniqueness in much the same manner that the Kutta condition
imposes uniqueness in the 1ifting case. In the comsideration of super—
sonlc quasi-conical flow, similar conditions to determine uniqueness do
not necessarily arise. Mathematically, the condition of uniqueness is
determined from the degree of dependence between simultaneous linear
equations.

One further remark concerning the analogy between 1lifting and non—
1ifting problems appears to be pertinent. In two-dimensional subsonic
theory the integral relation between the perturbation velocities along
the wing surface may be written, in the 1ifting case, as

C .
w(x,0) = —$ f u(x;,0)dx;
ELS o X~X3

where ¢ 18 chord length. In the symmetrical case, the interrelation
is expressed in the form

Cc
u(X,O) = .;[].E. f V(xl,O)dxl

o}

X-X3
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Thus, aside from the factor B, a complete duality exists in the formal
mathematical analysis of the two problems. Hence, the circulatory motion
associated with a flat plate at zero angle of attack (see sketch) is
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} \ /
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J v \ \\&,/
i 14 N N
== Z - o N -
’ R X
7
/
/ ~
I
) 2 » 12
Wing Wing _
/ - T NN
x RS Wt
Lifting case ' Thickness case

analogous to & slope distribution assoclated with zero pressure coeffi-
clent. However, in three—dimensional supersonic wing theory the basic
relations between w and u on the wing do not have the property of
duality (see equations (10) and (27)). The assumption of quasi—conical
flow, however, together with the restriction to triangular—type plan
forms with subsonic leading edges, brings the study of 1ift and thick—
ness into more general parallelism and a close similarity exists
between the final expressions in equations (25) and (32).

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., July 10, 1951
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APPENDIX

THE GENERALIZED PRINCIPAL PART AND FINITE PART OF AN INTEGRAL

If the singular integrand of a convergent improper integral 1is dif-
ferentiated formally, without due regard for the singularity, the result—
ing expression is, in general, lmproper. In appllied theory, however,
the differentiation 1s usually to be performed upon the Integral itself
and in this case a careful treatment of the entire expression leads to
a finite answer. The two most common examples of such problems arise
in the evaluation of the Cauchy principal part and Hadamard's finite
part. The following development indicates the manner in which these
cases are extended to include multiple differentiations. (The gener—
alized principal part shall be concerned with Integrands having singu—
larities within the region of integration and of order n where n 1s
a positive integer; the finite part, on the other hand, involves inte-
grands with singularities at an end point of the region of integration
and of order n + 1/2.)

Consider first the evaluation of Cauchy's principal part. In this
case a single differentiation is used and the expression

' b
g(x) = Sa; f A(xy) In |x=x1| dx1, a<x<D (a1)
a

becomes, for constants a and b,

b
g(x) =_f é_(_J_CL).d_x_J; (AQ)
a8

X—=X3

Here the symbol on the integral sign indicates that g(x) 1s to be
evaluated by a limiting process defined as follaows

_ < A(xy) P A(xy)
g(x) = €1_1>mo [/; —;;;—1— dxy + L+€ —-x—_—;—l- dxl] (53)

To assure the convergence of this integral it 1s sufficient but not
necessary to assume that A(x) is differentiable at the point x; = x
and that elsewhere within the region of integration A(xy) is either
continuous or possesses Ilntegrable singularities. The concept of the
Cauchy principal part is so well known that the symbol on the integral
is often omitted, as shall be done here.
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Turning next to the case of multiple differentiations, consider the
expressions

P ax by ax boax
I= _a__ f 1 = 1 = f —"'—-—(x_xl)2, a<x<b (Au)
B, 1

x Xq—X 0X X1—x
L X1 a 1

(074

where the limits of integration are independent of x and the symbols
on the two latter integrals indicate that the generalized principal part
1s to be calculated. From the definition of I in the first integral,
it follows that

I=2 100 L (45)

dx &  (b—x) (xa)

The simple definition given by equation (A4) can be generalized to
include integrals of the type :

5 b 3 b
Iz = =0 A(xy) o [x—=x;| dx; = = d/\ Alxa) dxy
‘ ox o

BXZ a - X=X
P A(x,y) dx
_ X3 1
_ j[ e | (46)

a

Equation (A6) defines the symbol appearing in the final member. It is
possible, however, to relate this integration to the particular integrand
in the final integral of equation (A4) by writing I- in the form

B ® A(xy) —AGx) .. " oy
e | [ MalohE g [ ]

a

Then 1f A(x;) 1s integrable and if, at x; = x, its derivative exists
and is single valued, the expression for I- becomes

b b
_ [ AGa) - Ax) ax;
" J/\ (Xl—‘x)2 o+ AR ;ﬁ1 (Xl—x)a

a
b ' '

= f A(Xl) - A§X) dx, — A(X) (b—&) (A?)
e (xx) (b-x) (¥-a)

where the results of equation (A5) have been used.
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The first integral in equation (A7) is now in a form that involves
no extension beyond the concept of Cauchy's principal part and the
evaluation of I> may be carried out with that form. Furthermore, it
can be shown from equation (A7) that if the indefinite integral of
A(x1)/(x1~x)2 exists such that

f A(xy)ax, = G(x1,x) + C \ : (A8)

(x,=x)*

then the value of I> can be found by following the conventional rules
for substitution of limits so that

b
f AlxgJaxy _ G(b,x) — G(a,x) (A9)
a (x1=x)?

The extension to higher ordered derivatives is bbvious. Thus, for
a and b 1ndependent of x, one has

n+l b n P
a a A(Xl)d-xl
In+1 = —a;ﬂi s/aj A(x1) In |x—X1| dxa = é? ‘/5-‘ (x1—x)
b
- nt f Al e
a (x;-x) '

Equation (Al0) defines the final member appearing in 1t. The quantity
I can also be written in the form '

n+i
L A(xy) - B( ) | b B( )ax
= n! X1) = BLX,X) X,X3 )dx;
Inyy =1 [ I; (xl—x)n+1 dx; + j{; —-——-——(Xl_x)n+1 ] (A11)
where
' ‘ ) :
B(x,x1) = A(x) + & {x) (x3=x) + . . . + A__(:l_l_l)(x‘) (xl—x)n—l
n—1)!
and
k 1P i
-——‘r—dxl == i) ax, __ 2 _ 1
i (r) ™ at <3— l e 1 { (b=x)* P (x-a) J’ig "
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The first n derivatives of A(x;) are assumed to exist and be single
valued at x; =x while elsewhere in the range of integration A(x)

may possess integrable singularities. The generalization of equation (A9)
holds so that if

f Axy) ax, fjﬁi = G(xy,x) + C (A12)

(x1—x)
then

b
A(x;) dx,
n+1
a (Xl—x)

G(b,x) - G(a,x) (A13)

It 1s also possible to extend the definition of equation (Al0) to
include a functional dependency on x in the numerator of the integrands,
Thus, replacing A(x;) by A(x,x;), equation (A10) again defines uniquely
a principal part integral provided the first n derivatives of A(x,x1)
with respect to x and x; exist at X1 = X

The original concept of the finite part was used by Hadamard in
connection with square root singularities. Consider the expressions

b b b
1. 2 f G _ f o Gxm __1 J[ (a1
=L a « b-x; a ab,/qul 2 a  (b-x;)%/%
From the first integral in this relatibn it follows that |
b
dx 2 :
f 7z = (A15)
a (b—=x3) v b-a

The natural extension of this idea is to consider

b b ’ b
A(xy)dxy _ d Alxy)ax; 1 A(x, )dx;
o Ada 1 [ Ama 0
a 3/2

d
d VYa Sox, . Ya D o, 2 (b—x)

where A(x;) is continuous at X3 = b and 1s integrable elsewhere in
the range of integration.

i

do

The evaluation of Jz can be related more closely to the integral
of equation (Alk) after rewriting Jo in the form :
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J2=._a_[fbA(X1)—A(b)dxl+A(b) fb dx, :l

ob a / b—xy a ‘

It follows that

7

o

b Alzy)dxy _ b A(x1) — A(b) dxi
ﬁ—-sﬁ-fa 572 dx1+A(b)j£'('b:'l_)7'

(b—x1) (b—=x1)

38

2

k3

(A17)

(418)

An interesting integr'ation technique can be evolved from equation

(A18). Setting

j[b A(xy)dx; _ lim fB Alxa) -A(d) o - _ 2A(b)
a (b—xl)s/z ,B —>b' (b——x1)3]2 +/ b-a

and setting the indefinite integr'al of

f A(x;)dx,
: 3/2

(b-x1)®/

equal to F(b,x;) + C, it follows that

. b . .
Ji A—(———t;)‘;ﬁje =~ [F(v,a) + C]
1

where

¢- lim [%)—-F(b,xn}

X1—-=>Db I/b_xl

Thus, with the proper choice of the constant of integration, the defi—
nite integral is found by substituting conventionally the lower limit.

In practice, C 1is often zero.

Defining . in the form

n+li

a1 = <a > f A(Xl)dll - (a > A(I1)
b b

_ () L 3...(2n—-l J[ xl)dxl
a

)n+1/2

oy
|

(A19)
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it follows that

b A(xy)dx; b A(x1) — B(b,x1) b B(b,x3)dxy
J[; —_—= /; dx, + Jl;' —_— = (A20)

(b—x1 )2+ (b—x1 )05 (b—x; )BHE

where

n—1A(n—1)(
(n—1)3

B(b,x1) = A(b) = A'(b)(bex1) + eeu + ) b) (pg,)B-2

and
b

i
f dxy  _ (=)t <_a_> fb dx; _ _ 2 1
a (b—xl)i”% 1.3.,.(2i-1) \Ob a (b—xl)%“ 2i-1 (b—a)i“%

¥

It is furthermore possible to extend the definition of equation
(A19) to include a functional dependence on b of the integrand A(xi).
Replacing A(x1) by A(b,x1), equation (Al9) again defines uniquely a
Tinite part integral provided that

lim | O%A(b,x1)
X3 ~—>'b abn Jb—X1 i

0
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